
Ваша оценкаЦитаты
Hermanarich12 июня 2018 г.Читать далееВы можете возразить, что закодированное сообщение, в отличие от незакодированного, само по себе ничего не выражает — чтобы его понять, необходимо знать код. Однако на самом деле незакодированных сообщений не существует Просто одни сообщения написаны на более знакомых кодах, а другие — на менее знакомых. Чтобы раскрыть значение сообщения, его необходимо «извлечь» из кода при помощи некоего механизма, или изоморфизма Иногда открыть метод дешифровки бывает трудно, но, как только этот метод раскрыт, сообщение становится прозрачным, как стекло. Когда код становится достаточно знакомым, он перестает выглядеть как таковой, и мы забываем о существовании декодирующего механизма. Сообщение сливается со значением.
3422
Hermanarich8 июня 2018 г.Читать далееМастер дзена по имени Гутей всегда поднимал палец когда его спрашивали о дзене. Молоденький ученик стал его копировать. Когда Гутей услышал об имитаторе, он позвал ученика и спросил правда ли это. «Да» — признался тот. Тогда Гутей спросил его понимает ли он, что делает. Вместо ответа ученик поднял указательный палец. Гутей быстро отрезал палец, вопя от боли ученик побежал к двери. Когда он достиг выхода Гутей позвал его: «Мальчик!» Ученик обернулся, и Гутей поднял свой указательный палец. В этот момент юноша достиг Просветления.
3526
Hermanarich7 июня 2018 г.Слушая музыку, любой сколько-нибудь музыкальный человек автоматически создает минимальный стек с двумя ключами. В этом «коротком стеке» содержатся основная тональность, а также ближайший «псевдоключ», тональность, в которой композитор «находится» в данный момент.
3480
Hermanarich7 июня 2018 г.Рекурсия — весьма общее понятие. (Рассказы внутри рассказов, фильмы внутри фильмов, картины внутри картин, матрешечки внутри матрешек (даже скобки внутри скобок!) — вот лишь несколько симпатичных примеров.)
3496
Hermanarich7 июня 2018 г.Читать далееДля практических целей все теории чисел одинаковы. Иными словами, если бы конструкция мостов зависела бы от теории чисел (и в каком-то смысле так оно и есть), было бы совершенно неважно, что существует множество ее вариантов — в аспектах, касающихся реального мира, все теории чисел совпадают. Этого нельзя сказать о различных геометриях; например, сумма углов в треугольнике равняется 180 градусам только в эвклидовой геометрии, она больше в эллиптической геометрии и меньше — в гиперболической. Говорят, что однажды Гаусс попытался измерить сумму углов в огромном треугольнике, образованном вершинами трех гор, чтобы раз и навсегда определить, какой именно тип геометрии управляет нашей вселенной. Через сто лет Эйнштейн открыл теорию (общую теорию относительности), утверждающую, что геометрия вселенной определяется количеством материи, в ней содержащейся — таким образом, никакой тип геометрии не присущ пространству как таковому. Это значит, что на вопрос «какой тип геометрии является истинным?» природа дает двусмысленный ответ не только в математике, но и в физике.
3417
Hermanarich7 июня 2018 г.Читать далееМы начали с введения формальной системы, которая, на первый взгляд, не только находилась в противоречии с внешним миром, но и имела внутренние противоречия. Однако через несколько минут нам пришлось взять эти «обвинения» обратно и признать свою ошибку; оказывается, дело было в том, что мы выбрали неудачную интерпретацию для символов системы. Изменив интерпретацию, мы вернули системе ее непротиворечивость! Становится ясно, что непротиворечивость — не свойство формальных систем как таковых, но зависит от интерпретации, предложенной для данной системы. Совершенно так же не является свойством формальных систем как таковых и противоречивость.
3405
Hermanarich5 июня 2018 г.Два монаха спорили о флаге Один сказал; «Этот флаг движется». Другой возразил: «Нет, это ветер движется». В это время мимо проходил шестой патриарх, Зенон, который сказал монахам: «Не флаг и не ветер — движется ваша мысль!»
3489
Hermanarich5 июня 2018 г.Иногда сложность нашего разума кажется нам настолько поразительной, что у нас опускаются руки перед задачей понять и описать его; тогда нам кажется, что никакие, даже самые замысловатые иерархические правила не способны управлять поведением разумных существ.
3463
Hermanarich5 июня 2018 г.Читать далееМежду тем, в классической математике тоже происходили интересные события. В 1880-х годах Георг Кантор развил теорию о различных типах бесконечности, известную под именем теории множеств. Теория Кантора была глубока и красива, но шла вразрез с интуицией; вскоре на свет появилось целое семейство парадоксов, основанных на теории множеств. Ситуация была не из приятных. Только математики начали оправляться от удара, нанесенного по математическому анализу парадоксами, связанными с теорией пределов, как попали из огня в полымя из-за нового, еще худшего набора парадоксов!
3416
Hermanarich18 июня 2018 г.Перед нами три автора: З, Ч и Э. З существует только в романе, написанном Ч. Аналогично, Ч — только герой романа, написанного Э. Что удивительно, Э — тоже не более как персонаж романа — чей автор, естественно, З. Может ли существовать такой авторский треугольник?
Разумеется, может! Но для этого все трое должны быть персонажами четвертого романа, написанного X.2388