
Ваша оценкаЦитаты
Hermanarich14 июня 2018 г.Хаотична ли природа, или же в ней имеется некая закономерность? И какова роль интеллекта в поисках ответа на этот вопрос?
4665
Hermanarich12 июня 2018 г.Читать далееВ нас, человеческих существах, тоже есть аспекты «аппаратуры» и «программного обеспечения» и разница между ними для нас настолько естественна, что мы перестаем ее замечать. Мы привыкли к негибкости нашей физиологии: то, что мы не можем усилием воли вылечить себя от всех болезней или заставить расти у нас на голове волосы любого цвета — лишь два простых примера. Однако мы можем «перепрограммировать» наш мозг, чтобы оперировать в рамках новых понятий. Удивительная гибкость интеллекта кажется почти несовместимой с тем фактом, что наш мозг сделан из «аппаратуры», подчиняющейся строгим правилам, аппаратуры, которую невозможно изменить. Мы не можем заставить наши нейроны реагировать быстрее или медленнее, не можем «поменять проводку» у себя в мозгу, не можем изменить внутренность нейрона — короче, у нас нет никакого выбора относительно нашей «аппаратуры» — и тем не менее, мы можем контролировать собственные мысли.
4510
Hermanarich5 июня 2018 г.Читать далееМы видим смысл, не замечая изоморфизма. Один из самых ярких тому примеров — человеческий язык. Люди часто приписывают значения самим словам, абсолютно не осознавая существования сложного «изоморфизма», эти значения порождающего. Эту ошибку совершить нетрудно; она состоит в том, что значение приписывается скорее объекту (слову), чем связи между данным объектом и реальностью. Вы можете сравнить это с наивным представлением о том, что шум является необходимым побочным эффектом столкновения двух предметов. Это, разумеется, неверно если два предмета столкнутся в вакууме, столкновение будет совершенно бесшумным. Здесь ошибка также заключается в том, что шум приписывается исключительно столкновению, и при этом игнорируется роль среды, переносящей звук от столкнувшихся предметов к уху.
4488
Kitty6 апреля 2013 г.в некоторых случаях только редкие личности могут заметить систему, управляющую жизнью многих людей — систему, никогда раньше таковой не считавшуюся. Подобные личности зачастую посвящают жизнь тому, чтобы убедить остальных, что система действительно существует, и что из нее необходимо выйти!
4736
Kitty6 апреля 2013 г.На самом деле, совершенно ясно, что мы — не что иное, как ходячие мешки противоречий, и наша целостность зависит от того, что в каждый данный момент мы способны сконцентрироваться только на чем-то одном. На чем именно — этого предсказать невозможно, поскольку обстоятельства, определяющие выбор, заранее не известны.
4285
Kitty6 апреля 2013 г.Иногда кажется, что каждый новый шаг на пути создания ИИ, вместо того, чтобы произвести нечто такое, что все признали бы разумным, углубляет наше понимание того, что интеллектом не является.
4334
Hermanarich17 июня 2018 г.Читать далееКогда мы видим слово «Я» или «мне» в тексте, к чему мы его относим? Например, подумайте о фразе «ВЫМОЙ МЕНЯ», которую иногда можно увидеть на грязном кузове грузовика. Кого это «меня»? Может быть, это какой-то несчастный заброшенный ребенок, который, желая быть вымытым, нацарапал эти слова на ближайшей поверхности? Или же это грузовик, требующий купания? Или сама фраза желает принять душ? А может быть, это русский язык ратует за собственную чистоту? Эту игру можно продолжать до бесконечности. В данном случае, эта фраза — только шутка имеется в виду, что мы должны на определенном уровне предположить, что эти слова написал сам грузовик, требующий, чтобы его вымыли. С другой стороны, эти слова ясно воспринимаются как написанные ребенком, и мы находим эту ошибочную интерпретацию забавной. Эта игра основана на прочтении слова «меня» на неправильном уровне.
3551
Hermanarich14 июня 2018 г.Основная мысль Канторова результата заключается в том, что существуют два типа бесконечности: одна из них описывает, сколько отдельных записей может быть в бесконечном списке, в то время как другая — сколько существует действительных чисел (или сколько есть точек на линии или ее отрезке). Вторая бесконечность «больше», в том смысле, что действительные числа невозможно уместить в таблице, длина которой описана с помощью первой бесконечности.
3518
Hermanarich14 июня 2018 г.Можно ли найти потолок для любого цикла — или же теории натуральных чисел присуща некая беспорядочность, мешающая нам предсказать заранее длину некоторых вычислений? Удивительно то, что верно второе, и сейчас мы увидим, почему. Наверное, именно такой тип рассуждений свел с ума Пифагора, впервые доказавшего иррациональность корня из двух.
3505
Hermanarich14 июня 2018 г.Можно ли увидеть любую проблему, как фруктовый сад, с такого угла, что ее секрет становится явным? Или же в теории чисел есть проблемы, остающиеся загадкой, с какого бы угла мы их не рассматривали?
3495