
Ваша оценкаЦитаты
Hermanarich17 июня 2018 г.Читать далееТЕЗИС ЧЁРЧА-ТЮРИНГА, СТАНДАРТНАЯ ВЕРСИЯ: Предположим, что существует метод при помощи которого разумное существо может разделять числа на два класса. Предположим также, что этот метод всегда приводит к ответу за конечный отрезок времени, и что этот ответ — всегда один и тот же для одного и того же числа. В таком случае существует некая конечная программа на Флупе (то есть, некая общерекурсивная функция), которая будет давать точно такие же ответы, как и разумное существо.
Основная идея здесь состоит в том, что любой мыслительный процесс, делящий числа на две категории, может быть описан в форме программы на Флупе. Интуиция утверждает, что других методов, чем имеющиеся во Флупе, не существует, и что невозможно использовать эти методы иначе, чем путем бесчисленных повторений (которые Флуп допускает). Тезис Черча-Тюринга невозможно доказать как Теорему математики — это всего лишь гипотеза о процессах протекающих в человеческом мозгу.2268
Hermanarich17 июня 2018 г.Читать далееИскусственный интеллект для краткости часто называют ИИ. Мне кажется, что сокращение ИИ могло бы также обозначать Искусственную Интуицию. Цель ИИ — понять, что происходит, когда в мозгу из мириад возможностей делается бесшумный и невидимый выбор той единственной, которая кажется наиболее подходящей в данной сложной ситуации. Во многих жизненных ситуациях дедуктивные рассуждения не годятся — не потому, что они привели бы к неправильным ответам, но потому, что существует огромное множество истинных, но неважных для данной ситуации суждений; приходится принимать в расчет слишком много факторов, и потому логические рассуждения оказываются неэффективными.
2286
Hermanarich16 июня 2018 г.Читать далееНаше трехмерное пространство — это единственная известная нам реальность. Двумерность точно так же фантастична для нас, как и четырехмерность, поскольку в нашем мире ничто не плоско по-настоящему, даже поверхность тщательнейшим образом отполированного зеркала. И все же мы держимся за идею, что стена или лист бумаги на самом деле плоские, — и интересно то, что мы продолжаем, с незапамятных времен, производить иллюзии пространства на этих самых плоских поверхностях. Не абсурдно ли нарисовать несколько линий и назвать это «домом»?
2280
Hermanarich16 июня 2018 г.Любая система, как бы сложна она ни была, может быть подвергнута Гёделевой нумерации, после чего в ней может быть определено понятие пар доказательства — и это будет ружьем, которое выстрелит в самого охотника. Как только система определена, упакована в «коробку», она становится уязвимой.
2263
Hermanarich14 июня 2018 г.Читать далееМы уже с самого начала столкнулись с тем, что формальные системы могут вести себя как неукротимые и опасные бестии, когда в них есть удлиняющие и укорачивающие правила, поскольку это может привести к бесконечному поиску среди строчек. Открытие Гёделевой нумерации показало, что у любого поиска строчки с определенным типографским свойством есть арифметический кузен: изоморфный поиск целого числа с соответствующим арифметическим свойством. Следовательно, чтобы найти разрешающий алгоритм для формальных систем, необходимо решить проблему непредсказуемо длинного поиска — хаоса — среди строчек.
2246
Hermanarich14 июня 2018 г.Читать далее...какие качества необходимы предмету, чтобы его можно было бы назвать патефоном? Почему бы Крабу не сказать, что его холодильник — это «совершенный» патефон? В доказательство он мог бы положить на холодильник любую пластинку и сказать: «Вот видите, он ее проигрывает!» Если бы Черепаха захотела что-то противопоставить этому дзен-буддйстскому акту, она должна была ответить: «Нет, ваш холодильник такого низкого качества, что его нельзя назвать патефоном: он вообще не может воспроизводить звуков (а тем более, саморазбивальных звуков)». Черепаха может записать пластинку под названием «Меня нельзя сыграть на патефоне X», только если патефон X действительно является патефоном! Метод Черепахи весьма хитер, так как он играет не на слабости системы, а на ее силе. Поэтому, чтобы он подействовал, необходимы патефоны достаточно высокого качества.
2243
Hermanarich14 июня 2018 г.Читать далееЧерепаха: Вы, безусловно, замечали, как некоторые писатели стараются наращивать напряжение поближе к концу своих историй — но читатель, держа книгу в руках, ЗНАЕТ, что рассказ подходит к концу. Таким образом, у него есть дополнительная информация, которая действует как предупреждение. Напряжение и неизвестность немного подпорчены физической сущностью книги. Было бы гораздо лучше, если бы в конце романов писатели оставляли прокладку потолще.
Ахилл: Прокладку?
Черепаха: Именно; я имею в виду кучу печатных страниц, не имеющих никакого отношения к истории, но маскирующих ее скорое окончание.
Ахилл: А-а, понятно. Таким образом конец истории может отстоять на, скажем, пятьдесят или даже сто страниц от последней страницы книги?
Черепаха: Да. Это привнесло бы некоторый элемент сюрприза, поскольку читатель не будет знать заранее, сколько страниц относятся к прокладке и сколько — собственно к истории.2244
Hermanarich14 июня 2018 г.Читать далееЧерепаха: Пример первого — нехаотичного — вида поиска мы находим в проверке на свойство Гольдбаха. Надо просто перебирать простые числа, меньшие 2N, и если какая-нибудь пара таких чисел при сложении дает 2N, то следовательно 2N обладает свойством Гольдбаха; в противном случае, оно им не обладает. Подобная проверка не только наверняка закончится — вы даже можете предсказать, КОГДА она закончится.
Ахилл: Значит, это ПРЕДСКАЗУЕМО КОНЧАЮЩАЯСЯ проверка. Теперь вы, наверное, скажете мне, что некоторые теоретико-числовые свойства нуждаются в другого рода проверке, которая когда-либо кончится, но неизвестно, когда?
Черепаха: Вы как в воду глядите, Ахилл. И существование подобного типа проверки доказывает, что системе натуральных чисел в некотором роде присущ хаос.2238
Hermanarich14 июня 2018 г.Задумывались ли вы когда-нибудь о том, что хаос может быть неотъемлемой частью красоты и гармонии?
2262
Hermanarich14 июня 2018 г....для того, чтобы объяснить какую-либо арифметическую истину, нам никогда не понадобится бесконечное число причин. Если бы существовал такой арифметический факт, который был результатом бесконечного числа не связанных между собой совпадений, то мы никогда не смогли бы найти конечное доказательство этой истины — а это просто смешно.
2228