
Ваша оценкаЦитаты
Аноним14 ноября 2015 г.Читать далееThe explanation that is usually given as to why we don’t see broken cups gathering themselves together off the
floor and jumping back onto the table is that it is forbidden by the second law of thermodynamics. This says that
in any closed system disorder, or entropy, always increases with time. In other words, it is a form of Murphy’s law: things always tend to go wrong! An intact cup on the table is a state of high order, but a broken cup on the floor is a disordered state. One can go readily from the cup on the table in the past to the broken cup on the floor in the future, but not the other way round. The increase of disorder or entropy with time is one example of what is called an arrow of time, something that distinguishes the past from the future, giving a direction to time. There are at least three different arrows of time. First, there is the thermodynamic arrow of time, the direction of time in which disorder or entropy increases. Then, there is the psychological arrow of time. This is the direction in which we feel time passes, the direction in which we remember the past but not the future. Finally, there is the cosmological arrow of time. This is the direction of time in which the universe is expanding rather than contracting.3169
Аноним14 ноября 2015 г.Читать далееIf Euclidean space-time stretches back to infinite imaginary time, or else starts at a singularity in imaginary time, we have the same problem as in the classical theory of specifying the initial state of the universe: God may know how the universe began, but we cannot give any particular reason for thinking it began one way rather than another. On the other hand, the quantum theory of gravity has opened up a new possibility, in which there would be no boundary to space-time and so there would be no need to specify the behavior at the boundary. There would be no singularities at which the laws of science broke down, and no edge of space-time at which one would have to appeal to God or some new law to set the boundary conditions for space-time.
3161
Аноним14 ноября 2015 г.Throughout the 1970s I had been mainly studying black holes, but in 1981 my interest in questions about the origin and fate of the universe was reawakened when I attended a conference on cosmology organized by the Jesuits in the Vatican. The Catholic Church had made a bad mistake with Galileo when it tried to lay down the law on a question of science, declaring that the sun went round the earth. Now, centuries later, it had decided to invite a number of experts to advise it on cosmology.
3156
Аноним14 ноября 2015 г.Читать далееThe idea of radiation from black holes was the first example of a prediction that depended in an essential way on both the great theories of this century, general relativity and quantum mechanics. It aroused a lot of opposition initially because it upset the existing viewpoint: “How can a black hole emit anything?” When I first announced the results of my calculations at a conference at the Rutherford-Appleton Laboratory near Oxford, I was greeted with general incredulity. At the end of my talk the chairman of the session, John G. Taylor from Kings College, London, claimed it was all nonsense. He even wrote a paper to that effect. However, in the end most people, including John Taylor, have come to the conclusion that black holes must radiate like hot bodies if our other ideas about general relativity and quantum mechanics are correct. Thus, even though we have not yet managed to find a primordial black hole, there is fairly general agreement that if we did, it would have to be emitting a lot of gamma rays and X rays.
3153
Аноним14 ноября 2015 г.Читать далееHow is it possible that a black hole appears to emit particles when we know that nothing can escape from within its
event horizon? The answer, quantum theory tells us, is that the particles do not come from within the black hole, but
from the “empty” space just outside the black hole’s event horizon! We can understand this in the following way: what
we think of as “empty” space cannot be completely empty because that would mean that all the fields, such as the
gravitational and electromagnetic fields, would have to be exactly zero. However, the value of a field and its rate of change with time are like the position and velocity of a particle: the uncertainty principle implies that the more accurately one knows one of these quantities, the less accurately one can know the other. So in empty space the field cannot be fixed at exactly zero, because then it would have both a precise value (zero) and a precise rate of change (also zero). There must be a certain minimum amount of uncertainty, or quantum fluctuations, in the value of the field.
One can think of these fluctuations as pairs of particles of light or gravity that appear together at some time, move apart, and then come together again and annihilate each other. These particles are virtual particles like the particles that carry the gravitational force of the sun: unlike real particles, they cannot be observed directly with a particle detector. However, their indirect effects, such as small changes in the energy of electron orbits in atoms, can be measured and agree with the theoretical predictions to a remarkable degree of accuracy.3154
Аноним14 ноября 2015 г.Читать далееThe second law of thermodynamics has a rather different status than that of other laws of science, such as Newton's law of gravity, for example, because it does not hold always, just in the vast majority of cases. The probability of all the gas molecules in our first box
found in one half of the box at a later time is many millions of millions to one, but it can happen. However, if one has a black hole around there seems to be a rather easier way of violating the second law: just throw some matter with a lot of entropy such as a box of gas, down the black hole. The total entropy of matter outside the black hole would go down. One could, of course, still say that the total entropy, including the entropy inside the black hole, has not gone down - but since there is no way to look inside the black hole, we cannot see how much entropy the matter inside it has3157
Аноним14 ноября 2015 г.Читать далееThe nondecreasing behavior of a black hole’s area was very reminiscent of the behavior of a physical quantity called entropy, which measures the degree of disorder of a system. It is a matter of common experience that disorder will tend to increase if things are left to themselves. (One has only to stop making repairs around the house to see that!) One can create order out of disorder (for example, one can paint the house), but that requires expenditure of effort or energy and so decreases the amount of ordered energy available.
A precise statement of this idea is known as the second law of thermodynamics. It states that the entropy of an isolated system always increases, and that when two systems are joined together, the entropy of the combined system is greater than the sum of the entropies of the individual systems.3156
Аноним14 ноября 2015 г.Before 1970, my research on general relativity had concentrated mainly on the question of whether or not there had been a big bang singularity. However, one evening in November that year, shortly after the birth of my daughter, Lucy, I started to think about black holes as I was getting into bed. My disability makes this rather a slow process, so I had plenty of time.
3151
Аноним14 ноября 2015 г.Black holes are one of only a fairly small number of cases in the history of science in which a theory was developed in great detail as a mathematical model before there was any evidence from observations that it was correct. Indeed, this used to be the main argument of opponents of black holes: how could one believe in objects for which the only evidence was calculations based on the dubious theory of general relativity?
3155
Аноним14 ноября 2015 г.Читать далееFinally, in 1973, David Robinson at Kings College, London, used Carter’s and my results to show that the conjecture had been correct: such a black hole had indeed to be the Kerr solution. So after gravitational collapse a black hole must settle down into a state in which it could be rotating, but not pulsating. Moreover, its size and shape would depend only on its mass and rate of rotation, and not on the nature of the body that had collapsed to form it. This result became known by the maxim: “A black hole has no hair.” The “no hair” theorem is of great practical importance, because it so greatly restricts the possible types of black holes.
3156