
Ваша оценкаЦитаты
serz_komarovv20 января 2023 г.К тому же Пенроуз, вопреки все более настойчивым возражениям небольшой группы физиков, имеет смелость отстаивать позиции здорового реализма. В его представлении реальна не только вселенная, но и математическая истина, непостижимым образом ведущая свое собственное независимое и вечное существование.
1335
serz_komarovv20 января 2023 г.Книга Пенроуза является самой мощной атакой на теорию сильного ИИ из всего написанного до сих пор.
131,1K
Hermanarich8 августа 2018 г....из доказательства Геделя следует с очевидностью, что понятие математической истины не может быть заключено ни в одну из формальных систем. Математическая истина выходит за рамки любого формализма.
13129
Hermanarich7 августа 2018 г.Читать далееЧто такое математика — изобретение или открытие? Процесс получения математиками результатов — что это: всего лишь построение не существующих в действительности сложных мысленных конструкций, мощь и элегантность которых способна обмануть даже их собственных изобретателей, заставив их поверить в «реальность» этих не более чем умозрительных построений? Или же математики действительно открывают истины уже где-то существующие, чья реальность в значительной степени независима от их деятельности? Я думаю, что читателю должно стать уже совершенно ясно, что я склонен придерживаться скорее второй, чем первой точки зрения.
13339
Hermanarich26 июля 2018 г.Читать далееСпособность понимать никоим образом не может сводиться к некоторому набору правил. Более того, понимание является свойством, которое зависит от нашего сознания; и что бы не отвечало в нас за сознательное восприятие — это должно самым непосредственным образом участвовать в процессе «понимания». Тем самым, в формировании нашего сознания с необходимостью есть элементы, которые не могут быть получены из какого бы то ни было набора вычислительных инструкций; что, естественно, дает нам веские основания считать, что сознательное восприятие — процесс существенно «невычислимый».
13118
serz_komarovv21 января 2023 г.Множество Мандельброта — это не плод человеческого воображения, а открытие. Подобно горе Эверест, множество Мандельброта просто-напросто уже существовало «там вовне»!
1273
serz_komarovv21 января 2023 г.Более того, сложную структуру множества Мандельброта во всех ее деталях не под силу охватить никому из нас, и ее невозможно полностью отобразить на компьютере. Создается впечатление, что рассматриваемая структура не является всего лишь частью нашего мышления, но что она реальна сама по себе.
1244
serz_komarovv21 января 2023 г.Читать далееМножество Мандельброта впечатляет своей сложностью, особенно учитывая, как это часто бывает в математике, удивительную простоту его определения. Кроме того, структура этого множества в целом не очень чувствительна к выбору алгебраической формы отображения — z → z ^2 + с . Многие другие итеративные отображения (например, z → z 3 + iz 2 + c ) приводят к поразительно похожим структурам (при условии выбора подходящего начального числа — возможно, это не 0 , а значение, четко задаваемое вполне определенным математическим правилом для каждого разумно выбранного отображения). Подобные «мандельбротовы» структуры характеризуются некоторыми универсальными или абсолютными свойствами по отношению к итеративным комплексным отображениям. Изучение таких структур является предметом отдельного раздела математики — так называемой теории комплексных динамических систем.
12345
serz_komarovv21 января 2023 г.Трудность в данном случае состоит в том, что мы не знаем, какой именно из имеющихся алгоритмов применять в том или ином случае. Это вопрос об установлении математической истинности отдельного утверждения, но не об общем решении проблемы для целого класса утверждений. Очень важно сознавать, что сами по себе алгоритмы не доказывают математическую истину. Решение о правомерности использования каждого алгоритма должно всегда приходить извне.
12205
Hermanarich7 августа 2018 г.Часто думают, что теорема Геделя имеет, в некотором роде, отрицательный смысл, поскольку она указывает на принципиальные ограничения в применении формальных математических рассуждений. Независимо от нашего мнения об универсальности применяемого подхода, всегда найдутся утверждения, которые не попадают в сферу его действия.
12141