
Ваша оценкаЦитаты
Egoriy_Berezinykh17 сентября 2025 г.Читать далееКак и прежде, требование, чтобы в природе с помощью компенсирующих полей соблюдалась абстрактная калибровочная симметрия (на этот раз более широкая), приводит нас к открытию (чисто теоретическому) новых типов полей, обладающих новыми свойствами, например способностью превращать кварки в лептоны. В простейшем варианте ТВО, предложенном Джорджи и Глэшоу, волшебная ручка связывает вместе красные, зеленые и синие d-кварки, позитрон и антинейтрино. Для этого требуется двадцать четыре поля. Двенадцать из квантов этих полей уже известны: фотон, две W-частицы, Z-частица и восемь глюонов.
Остальные двенадцать квантов – новые, объединенные общим названием Х-частицы. Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами (это соответствует положениям волшебной ручки, при которых происходит смешивание, например, красного d-кварка и позитрона). Следовательно, кванты этих полей, Х-частицы, могут превращать кварки в лептоны (и наоборот), если те обмениваются ими как переносчиками взаимодействия. Электрический заряд Х-частиц равен 1/3 и 4/3.14
Egoriy_Berezinykh17 сентября 2025 г.Читать далееСуть идеи состоит в следующем. Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. За неимением лучшего термина это? “заряд” назвали цветом. (Разумеется, это название не имеет никакого отношения к обычному цвету.) Электромагнитное поле порождается зарядом только одного сорта, а для создания более сложного глюонного поля потребовалось три различных цветовых заряда. Каждый кварк соответственно мог быть одного из трех возможных цветов, которые совершенно произвольно были названы красным, зеленым и синим.
Связанную с этими цветами калибровочную симметрию наглядно можно представить, снова воспользовавшись “волшебной ручкой”, позволяющей смешивать цвета кварков. В данном случае ручка имеет три указателя цвета – красный, зеленый и синий, – а не два. Поворот ручки превращает красные кварки в зеленые или синие в зависимости от направления вращения. И в этом случае превращение происходит непрерывно: красный цвет постепенно переходит в синий и т.д.
Далее теория сильного взаимодействия развивается по тому же сценарию, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии – инвариантности относительно изменений цвета в каждой точке пространства – приводит к необходимости введения компенсирующих силовых полей. Так как на этот раз “волшебная ручка” имеет не два, а три указателя, симметрия оказывается более сложной, что отражается в большем числе 'полей, необходимых для поддержания локальной калибровочной симметрии. Всего требуется восемь новых компенсирующих силовых полей. Частицами – переносчиками этих полей, разумеется, являются глюоны, и, таким образом, из теории следует, что должно быть восемь различных типов глюонов. Это изобилие резко отличается от одного-единственного переносчика электромагнитного взаимодействия (фотона) и трех переносчиков слабого взаимодействия (W+ -,W– и Z-частицы).
Антикварки бывают антикрасные, антизеленые и антисиние. Сами глюоны также несут различные цвета, но не чистые, а смешанные, например сине-антизеленый. Когда кварк испускает глюон, его цвет изменяется в зависимости от цвета глюона. Например, красный кварк может, испустив красно-антисиний глюон, изменить свой цвет на синий. Аналогично зеленый кварк, поглотив сине-антизеленый глюон, превращается в синий и т.д.
Итак, испускание или поглощение глюона сопровождается изменением природы кварка, например превращением красного кварка в зеленый. В этом отношении сильное взаимодействие напоминает слабое, при котором испускание W-частицы сопровождает, скажем, превращение электрона в нейтрино. Кварки участвуют как в сильном, так и в слабом взаимодействии, но изменение природы кварка, сопровождающееся испусканием переносчика слабого взаимодействия, отличается от того, что происходит с кварком при испускании глюона. В то время как глюоны изменяют цвет кварка, слабое взаимодействие изменяет его аромат. Например, при распаде нейтрона один из его d-кварков испускает W–частицу, превращаясь в u-кварк. Важно помнить, что кварки обладают и цветом, и ароматом, и не путать эти их характеристики.
В типичном адроне (например, в протоне) три кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако такие изменения не носят произвольный характер. Математический аппарат теории накладывает жесткое ограничение в виде очень важного правила, которому должна неукоснительно следовать эта “игра цветов”. В любой момент времени “суммарный” цвет трех кварков должен представлять собой сумму “красный + зеленый + синий”. Продолжая аналогию с реальным цветом, можно сказать, что комбинация цветов в адроне должна всегда давать белый цвет (смешение первичных цветов, красного, зеленого и синего, дает белый цвет). Итак, мы видим фундаментальную калибровочную симметрию “за работой”. Действие глюонных полей компенсирует внутренние изменения цветов кварков, неизменно сохраняя чисто белым цвет адрона.15
Egoriy_Berezinykh17 сентября 2025 г.Читать далееКалибровочная симметрия – гораздо более важное понятие, чем просто изящный математический прием. В ней скрыт ключ к построению квантовых теорий взаимодействий, свободных от разрушительного действия бесконечных членов уравнений, о чем шла речь в предыдущем разделе. Калибровочная симметрия, как оказалось, тесно связана с перенормируемостью. Чудо КЭД основано на глубокой и простой симметрии, присущей электромагнитному полю. Это наводит на мысль о том, что трудности квантового описания трех других взаимодействий, по-видимому, связаны с тем, что нам не удалось обнаружить полный набор скрытых в них симметрий. Например, если бы теорию слабого взаимодействия можно было сформулировать на языке калибровочных полей, то это способствовало бы успешному построению квантового описания этого взаимодействия.
На первый взгляд, однако, кажется, что на пути к осуществлению такой программы возникает серьезное препятствие. Одна из особенностей калибровочных полей состоит в том, что эти поля – дальнодействующие. Возможность проведения калибровочных преобразований в любой точке требует, чтобы компенсирующие поля действовали во всем пространстве. Для гравитации и электромагнетизма, простирающихся в пространстве и оказывающих влияние на удаленные объекты, это нормально, но слабое взаимодействие существует только на очень малых расстояниях. На квантовом языке это означает, что гравитон и фотон имеют нулевые массы покоя, а переносчики слабого взаимодействия, W и Z-частицы, чрезвычайно массивны. Казалось, что это кладет конец всяким попыткам описания слабого взаимодействия на языке калибровочных полей.15
Egoriy_Berezinykh17 сентября 2025 г.Читать далееС появлением теории относительности представление электрона в виде крохотного твердого шарика столкнулось с дополнительной трудностью, обусловленной предположением, что электрон – это твердое тело. Представьте себе, что вы ударили по сферическому мячу, в результате чего мяч полетел в определенном направлении. Если бы мяч был абсолютно твердым, то он двигался бы, не меняя формы. Для этого все участки мяча должны начать двигаться одновременно. Но такое предположение противоречит принципу, утверждающему, что никакое физическое воздействие не может распространяться быстрее света. Часть поверхности мяча, удаленная от точки удара, не чувствует удара и поэтому не реагирует на него, по крайней мере, пока ударная волна (которая распространяется со скоростью меньше скорости света) не пробежит через мяч. Наоборот, область мяча, близкая к точке удара, должна начать двигаться раньше остальной части мяча. Следовательно, мяч изменит форму; он не может быть абсолютно твердым. А если электрон можно сдавить и расплющить, то в принципе его можно и разорвать на части. Но в таком случае он не был бы элементарной частицей. Мы могли бы увидеть кусочки заряженного вещества различных форм и размеров, хотя в действительности электроны неразличимы.
Чтобы избежать эту трудность, физики были вынуждены отказаться от представления об электроне как абсолютно твердом шарике. Электрон стали рассматривать как точку не имеющую структуры и размеров. Хотя подобная модель несколько смягчает остроту вопроса о том, что удерживает вместе отдельные части электрона, возникает новая трудность. Создаваемая заряженным телом электрическая сила меняется в зависимости от расстояния по закону обратных квадратов. С приближением к источнику поле возрастает. В случае точечного источника поле растет до бесконечности. Это означает, что полная электрическая энергия такой системы будет бесконечной.
Бесконечная величина энергии поля точечного электрона, казалось бы, наносит смертельный удар теории ноля: если бы электрон обладал бесконечной энергией, то он был бы бесконечно тяжелым, что абсурдно. Теоретики оказались перед выборам:
либо отказаться от представления о точечном электроне, либо найти выход из тупика. И выход действительно был найден, хотя некоторые сочли его чем-то вроде жульничества. Он известен ныне как “перенормировка”.
Представим себе, что мы как-то исхитрились “выключать” заряд электрона С исчезновением заряда исчезнет и создаваемое им поле, и соответствующая электрическая энергия. То, что при этом осталось, уместно назвать “голым” электроном, с которого сорвано окутывающее его электромагнитное поле. Какова же масса “голого” электрона? Наблюдаемая масса реального электрона состоит как бы из двух частей – массы “голого” электрона и массы, соответствующей энергии электрического поля. Трудность заключается в том, что масса, соответствующая энергии электрического поля, при вычислении оказывается бесконечной. Такой результат был бы бессмысленным, если бы мы действительно могли “выключить” электрический заряд электрона, поскольку ни одна физическая -величина не может получать бесконечно большое приращение. Но заряд электрона нельзя выключить. Наблюдая электрон, мы воспринимаем его в целом: и поле, и все остальное. Наблюдаемая масса, разумеется, конечна. Так стоит ли всерьез беспокоиться, если вычисления показывают, что неотделимая часть массы электрона обращается в бесконечность?
Некоторых это действительно беспокоит, но не слишком серьезно. Возникновение в уравнениях теории бесконечных членов – своего рода предупреждение о том, что не все в порядке, но если бесконечности не появляются в наблюдаемых величинах, то их можно просто игнорировать и продолжить вычисления. При этом необходимо изгнать бесконечности из формул, чтобы продолжить пользоваться ими. Для этого теоретик просто смещает, “перенормирует”, нулевую точку на шкале измерения масс, сдвигая ее на бесконечно большую величину. В какой-то степени это похоже на договоренность отсчитывать высоту полета самолета не от уровня моря, а от уровня земной поверхности, только в случае электрона такое смещение имеет бесконечную величину. При этом теоретик ссылается на то, что положение нуля несущественно, поскольку на шкале масс нет выделенного начала отсчета; любой сдвиг – даже на бесконечно большую величину – в нашей власти и ненаблюдаем в реальном, физическом мире.
Благодаря этому хитроумному приему из описания электрона удается исключить бесконечные члены, которые поначалу грозили низвести теорию до абсурда. Однако на этом неприятности, связанные с квантовым описанием точечного электрона, не кончились. Возникла проблема, связанная с природой виртуальных фотонов.15
Egoriy_Berezinykh17 сентября 2025 г.Читать далееТо, что казалось пустым пространством, в действительности кишит виртуальными частицами. Вакуум не безжизнен и безлик, а полон энергии. “Реальную” частицу, например электрон, всегда необходимо рассматривать на фоне этой непрерывной активности. Перемещаясь в пространстве, электрон в действительности оказывается в окружности частиц-призраков – виртуальных лептонов, кварков и переносчиков взаимодействий, – плутая в этой неразберихе. Своим присутствием он вносит возмущение в непрерывную активность вакуума, которая в свою очередь оказывает воздействие на электрон. Даже в состоянии покоя электрон не знает покоя: со всех сторон его непрерывно штурмуют другие частицы, появившиеся из вакуума.
14
Egoriy_Berezinykh14 сентября 2025 г.Читать далееВ сущности, цель науки – это поиск единства. Научный метод обязан своими значительными успехами способности ученых связывать разрозненные фрагменты знания в единую картину. Отыскивать связующее звено – одна из главных задач научного исследования. Выявление Ньютоном связи между гравитацией и движением планет ознаменовало собой рождение научной эры. Выявление связи между болезнетворными микробами и заболеваниями положило начало современной медицине как истинной науке. Установление связи термодинамических свойств газа с хаотическим движением молекул поставило на прочную основу атомную теорию вещества. Обнаружение связи между массой и энергией проложило путь к ядерной энергии.
Всякий раз, когда ученым удается установить новые связи, расширяется понимание окружающего мира и возрастает наша власть над ним. Новые связи не просто объединяли наши познания – они указывали путь к ранее не известным явлениям. Связи – это одновременно и синтез знания, и стимул, направляющий научные исследования по новым, непроторенным дорогам.
Фундаментальная физика всегда прокладывала путь к единству знания. Но все происходившее в физике с начала 70-х годов не сравнимо ни с чем. По-видимому, мы стоим на пороге более могущественного и глубокого объединения, чем когда-либо ранее. Среди физиков растет убеждение, что начинают вырисовываться контуры не более и не менее как единой теории всего сущего.
Подобные теории отнюдь не новость. Большинство религий претендуют на описание естественного и потустороннего миров в их космическом единстве. Но религиозные космологии уходят корнями в древнюю мудрость, божественное откровение и теологические хитросплетения. Среди них нет и двух одинаковых.139
Egoriy_Berezinykh14 сентября 2025 г.Читать далееПо моему твердому убеждению, физикам, работающим в области высоких энергий, нет нужды оправдывать необходимость фундаментальных исследований ссылками на приложения (особенно военные), исторические аналоги или смутные обещания возможных технических чудес. Физики проводят эти исследования прежде всего во имя своего неистребимого желания узнать, как устроен наш мир, стремления более детально понять природу. Физика элементарных частиц не имеет себе равных среди других видов человеческой деятельности. На протяжении двух с половиной тысячелетий человечество стремилось найти изначальные “кирпичики” мироздания, и теперь мы близки к конечной цели. Гигантские установки помогут нам проникнуть в самое сердце материи и вырвать у природы ее сокровеннейшие тайны. Человечество могут ожидать неожиданные приложения новых открытий, неведомые ранее технологии, но может оказаться, что физика высоких энергий ничего не даст для практики. Но ведь и от величественного собора или концертного зала немного практической пользы. В этой связи нельзя не вспомнить слова Фарадея, заметившего как-то: “Что толку от новорожденного?”. Далекие от практики виды человеческой деятельности, к коим относится и физика элементарных частиц, служат свидетельством проявления человеческого духа, без которого мы были бы обречены в нашем излишне материальном и прагматичном мире.
114
Egoriy_Berezinykh14 сентября 2025 г.Читать далееИзвестная под названием Сверхпроводящий суперколлайдер (Superconducting Super Collider, SSC), но чаще именуемая “де-зертрон” (от англ. desert — пустыня. —Ред.), эта чудовищная машина сможет ускорять протоны до энергий, примерно в 20 тыс. раз превышающих энергию (массу) покоя. Эти цифры можно интерпретировать по-разному. При максимальном ускорении частицы будут двигаться со скоростью всего на 1 км/ч меньше скорости света – предельной скорости во Вселенной. Релятивистские эффекты при этом столь велики, что масса каждой частицы в 20 тыс. раз больше, чем в состоянии покоя. В системе, связанной с такой частицей, время растянуто настолько, что 1 с соответствует 5,5 ч в нашей системе отсчета. Каждый километр камеры, по которой проносится частица, будет “казаться” ей сжатым всего лишь до 5,0 см.
13
Egoriy_Berezinykh14 сентября 2025 г.Читать далееУспешное описание взаимодействия с помощью частицы-переносчика сопровождалось расширением понятия фотона: фотон оказывается не только частицей видимого нами света, но и призрачной частицей, которую “видят” только заряженные частицы, претерпевающие рассеяние. Иногда наблюдаемые нами фотоны называют реальными, а фотоны, переносящие взаимодействие, – виртуальными, что напоминает об их скоротечном, почти призрачном существовании. Различие между реальными и виртуальными фотонами несколько условно, но тем не менее эти понятия получили широкое распространение.
Описание электромагнитного взаимодействия с использованием понятия виртуальных фотонов – его переносчиков – по своему значению выходит за рамки просто иллюстраций квантового характера. В действительности речь идет о продуманной до мельчайших деталей и оснащенной совершенным математическим аппаратом теории, известной под названием квантовой электродинамики, сокращенно КЭД. Когда КЭД была впервые сформулирована (это произошло вскоре после второй мировой войны), физики получили в свое распоряжение теорию, удовлетворяющую основным принципам как квантовой теории, так и теории относительности. Это прекрасный случай увидеть совместные проявления двух важных аспектов новой физики и. проверить их экспериментально.12
Egoriy_Berezinykh14 сентября 2025 г.Читать далееФизикам недостаточно знать, что та или иная частица существует – они стремятся понять, какова ее роль. Ответ на этот вопрос зависит от перечисленных выше свойств частиц, а также от характера сил, действующих на частицу извне и внутри ее. В первую очередь свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются андронами. Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами, что означает “легкие”. Познакомимся кратко с каждым из этих семейств.
12