Брошюра написана по материалам лекции, прочитанной автором 4 декабря 2004 года на Малом мехмате МГУ для школьников 9-11 классов. В ней рассказывается об одной из знаменитых задач комбинаторной геометрии - гипотезе Борсука, которая утверждает, что в п-мерном пространстве всякое ограниченное множество можно разбить на п + 1 часть меньшего диаметра. Вначале подробно анализируются случаи малых размерностей и доказывается, что при п=1, 2, 3 гипотеза верна. Далее приводятся различные оценки сверху для...