
Ваша оценкаЦитаты
Аноним21 сентября 2025 г.Читать далееПредставьте себе чашку с водой, которая падает со стола на пол и разбивается вдребезги. Если снять это на камеру, вы без труда поймете, проигрывается ли ролик вперед или назад. При прокрутке ролика назад вы увидите, как осколки чашки внезапно собираются вместе на полу и прыгают обратно на стол, где превращаются в целую чашку. Вам сразу станет ясно, что вы смотрите ролик в обратном направлении, потому что такого рода поведение чашек не наблюдается в обычной жизни. Иначе производители посуды остались бы без работы.
Тот факт, что осколки разбитых чашек не склеиваются на полу и не запрыгивают обратно на стол, объясняют как следствие второго начала термодинамики: беспорядок, или энтропия, в любой замкнутой системе со временем только увеличивается. То есть это одна из форм закона Мерфи: все, что может пойти не так, пойдет не так! Нетронутая чашка на столе находится в упорядоченном состоянии, разбитая чашка на полу – это состояние беспорядка. Переход от чашки на столе в прошлом к разбитой чашке в будущем представить легко, а обратный процесс – невозможно.
Возрастание беспорядка, или энтропии, со временем – это один из примеров так называемой стрелы времени – того, что отличает прошлое от будущего и тем самым задает направление событиям. Существуют как минимум три разновидности стрел времени. Во-первых, термодинамическая. Это направление времени, относительно которого возрастает энтропия. Во-вторых, выделяют психологическую стрелу времени. Это направление, в котором протекает время по нашим ощущениям, в согласии с ним мы помним прошлое, а не будущее. И наконец, есть космологическая стрела времени. Ориентируясь на нее, говорят, что Вселенная скорее расширяется, чем схлопывается.228
Аноним21 сентября 2025 г.Читать далееОдна только мысль о том, что пространство и время могут образовывать замкнутую поверхность без границ, накладывает глубокий отпечаток на представления о роли Бога в делах космоса. Научные теории с успехом справляются с описанием событий, и потому большинство людей пришли ко мнению, что Бог позволяет Вселенной эволюционировать в соответствии с некоторой системой законов, не вмешиваясь и не нарушая их. Однако законы физики молчат о том, какой Вселенная была в эпоху своего зарождения: завести механизм, запустить его – все так же прерогатива Бога. Пока мы считаем, что у Вселенной было начало, в картине мира сохраняется место и для Творца. Но если Вселенная и вправду полностью самодостаточна – не имеет ни края, ни границ, – у нее нет также начала и конца: она просто есть. Так зачем же тогда Создатель?
226
Аноним21 сентября 2025 г.Читать далееИсходя из сказанного, кто-то может заключить, будто так называемое мнимое время на самом деле и есть действительное, реальное время, а то, что мы называем действительным временем, – всего лишь плод нашего воображения. В действительном времени у вселенной есть начало и конец – они находятся в сингулярностях, образующих границы пространства-времени, где законы физики перестают действовать. Но во мнимом времени нет ни сингулярностей, ни границ. Так что не исключено, что время, называемое нами мнимым, в действительности более фундаментально, а то, что мы называем действительным временем, – всего лишь концепция, и мы придумали ее, чтобы описать, как, на наш взгляд, выглядит Вселенная. Но вспомним, о чем говорилось в первой главе: научная теория – это всего лишь математическая модель, созданная для описания наших наблюдений; она существует только в нашем воображении. Так что, может быть, вопрос «Что реально – действительное или мнимое время?» вообще не имеет смысла. Это всего только вопрос выбора – выбора более удобного инструмента для описания.
237
Аноним21 сентября 2025 г.Читать далееИдея о том – и это важно отметить, – что пространство и время конечны, но при этом не имеют границ, есть гипотеза: ее нельзя вывести из какого бы то ни было другого принципа. Как и любую другую научную теорию, ее можно выдвинуть из чисто эстетических или метафизических соображений, но подлинной проверкой являются предсказания на ее основе, которые согласуются с наблюдениями. В случае квантовой теории гравитации это, однако, трудно обеспечить по двум причинам. Во-первых, как станет понятно из главы 11, мы пока не уверены, какая из теорий успешнее других сочетает общую теорию относительности и квантовую механику, хотя уже много знаем о том, какую форму эта теория должна иметь. Во-вторых, любая модель, в подробностях описывающая целую Вселенную, будет математически слишком сложной, чтобы с ее помощью получить точные предсказания. Поэтому приходится делать упрощающие предположения и использовать приближения, хотя и в этом случае получение предсказаний остается чрезвычайно трудной задачей.
Каждая траектория в фейнмановском методе описывает не только пространство-время, но и все, что в нем находится, включая сложные организмы – например людей, – которые могут наблюдать историю Вселенной. Это дает нам дополнительный аргумент в пользу антропного принципа: если все траектории (истории) возможны, то, раз мы существуем внутри одной из траекторий (историй), мы можем применить антропный принцип, чтобы объяснить, почему Вселенная такова, какова она есть. О смысле других историй, или траекторий, в которых нас нет, сложно судить однозначно. Однако этот взгляд на квантовую теорию гравитации был бы куда более приемлемым, если бы удалось показать, что наша Вселенная – не просто одна из многих возможных траекторий, но и одна из наиболее вероятных. Для этого надо выполнить суммирование по траекториям всех возможных евклидовых разновидностей пространства-времени, не имеющих границ.226
Аноним21 сентября 2025 г.Читать далееЕсли Вселенная действительно бесконечна в пространстве или если существует бесконечное множество вселенных, то где-нибудь могут существовать обширные области, начавшие эволюцию с однородного и упорядоченного состояния. Здесь можно вспомнить об орде обезьян, стучащих по клавиатурам пишущих машинок, – в большинстве случаев результатом такого набора будет полная бессмыслица, но изредка и по чистой случайности на листе можно будет прочесть сонет Шекспира. Проводя параллель со Вселенной – не может ли статься, что мы живем в области, которая по воле случая оказалась однородной? На первый взгляд это кажется совершенно невероятным, потому что однородных областей намного меньше, чем хаотичных и неупорядоченных. Но предположим, что только в однородных областях есть звезды и галактики, подходящие условия для возникновения сложных самовоспроизводящихся организмов вроде нас, которых может заинтересовать вопрос: почему Вселенная такая однородная? Это иллюстрация антропного принципа, который можно сформулировать так: мы видим Вселенную такой, какая она есть, потому что мы существуем.
Существуют две формулировки антропного принципа – слабая и сильная. Слабый антропный принцип гласит, что во Вселенной, которая достаточно протяженна или бесконечна в пространстве и/или во времени, необходимые условия для возникновения разумной жизни соблюдаются только в некоторых ограниченных во времени и пространстве областях. Поэтому разумные существа в этих областях не должны удивляться тому, что в том месте Вселенной, где они живут, соблюдаются условия, необходимые для их существования. Примерно как состоятельный человек, который живет в хорошем районе и не видит бедности.
С помощью слабого антропного принципа, например, «объясняется», почему Большой взрыв произошел около десяти миллиардов лет назад: потому что примерно столько времени требуется для появления разумных существ. Как мы установили выше, сначала должно было образоваться первое поколение звезд. Эти звезды переработали часть исходных запасов водорода и гелия в элементы вроде углерода и кислорода, из которых мы состоим. Эти звезды после вспыхнули как сверхновые, и из остатков их вещества сформировались другие звезды и планеты, в том числе и тела Солнечной системы, возраст которых составляет около пяти миллиардов лет. На протяжении одного-двух миллиардов лет на Земле было слишком жарко для появления каких бы то ни было сложных организмов. В течение оставшихся трех миллиардов лет шел медленный процесс биологической эволюции от простейших организмов к существам, способным измерить время, прошедшее с момента Большого взрыва.
Мало кто станет оспаривать справедливость и полезность слабого антропного принципа. Некоторые мыслители однако пошли дальше, предложив сильную его версию. В согласии с этой теорией существует либо множество разных вселенных, либо в пределах одной вселенной имеется множество разных областей, каждая с индивидуальной начальной конфигурацией и индивидуальным набором законов природы. Условия в большинстве этих областей не совместимы с возникновением сложных организмов, и только в небольшом числе вселенных, похожих на нашу, рождаются разумные существа и в свое время задают вопрос: «Почему Вселенная такова, какой мы ее видим?» Ответ прост: если бы она была иной, нас бы в ней не было!228
Аноним21 сентября 2025 г.Читать далееПохоже, наука сформулировала набор законов природы, которые – насколько позволяет принцип неопределенности – задают эволюцию Вселенной со временем при условии, что нам известны ее параметры в любой выбранный момент времени. Эти законы могли быть первоначально установлены Богом, но похоже, что сразу после этого Бог предоставил Вселенную саму себе, и она продолжила развиваться по ниспосланным Творцом директивам безо всякого Его вмешательства. Но как он выбрал начальное состояние и конфигурацию Вселенной? Каковы были граничные условия в начале времен?
Ответить на этот вопрос можно так: Бог выбрал начальную конфигурацию Вселенной, руководствуясь соображениями, которые нам не дано постичь. Это, без сомнения, вполне по силам всемогущему существу… Но если Бог дал жизнь Вселенной столь непонятным образом, то почему Он позволил ей эволюционировать в соответствии с законами, которые мы смогли понять? Вся история науки представляет собой постепенное осознание того, что ничто в мире не происходит произвольным образом и что происходящие события отражают некий глубинный строй, который мог быть установлен Богом – но мог и не быть. Вполне естественно предположить, что этот строй касается не только законов, но и условий на границе пространства-времени, которые определяют начальное состояние Вселенной. Может существовать множество моделей Вселенной с разными начальными условиями, и все они будут подчиняться физическим законам. Но должен быть некий принцип, который указывает на единственное начальное состояние, а следовательно, на одну модель нашей Вселенной.224
Аноним21 сентября 2025 г.Читать далееПочему ранняя Вселенная была такой горячей?
Почему Вселенная столь однородна на больших масштабах? Почему она выглядит одинаковой в любой точке пространства и в любом направлении? А в частности, почему температура микроволнового реликтового излучения почти одинакова во всех направлениях? Это чем-то напоминает экзамен в университете. Если все студенты дают абсолютно одинаковые ответы, то можете быть совершенно уверены: они успели договориться об этом заранее. Но в описанной выше модели с момента Большого взрыва прошло недостаточно времени, чтобы свет успел дойти из одной удаленной области до другой, даже если в эпоху ранней Вселенной эти области находились совсем близко друг к другу. По теории относительности, если свет не успевает пройти из одной области в другую, то никакой другой информации это также не под силу. Значит, температура в разных областях ранней Вселенной никак не могла достичь одного уровня, если только по некой неясной причине она не была одинаковой изначально.
Почему Вселенная начала быть и расширяться со скоростью, настолько близкой к критической – балансирующей на грани между моделями с последующим сжатием и с бесконечным расширением, – что даже сейчас, спустя десять миллиардов лет, расширение происходит почти с той же стремительностью? Если бы через секунду после Большого взрыва скорость расширения Вселенной была всего на одну стоквадриллионную долю меньше, то Вселенная сжалась бы, не успев разрастись до современного размера.
Хотя Вселенная весьма однородна на больших масштабах, в ней есть локальные неоднородности вроде звезд и галактик. Считается, что они образовались из-за небольших расхождений по плотности между разными областями в ранней Вселенной. Но какова природа этих флуктуаций плотности?
Общая теория относительности сама по себе не может объяснить этих парадоксов и дать ответы на эти вопросы – поскольку постулирует, что Вселенная родилась из вещества с бесконечной плотностью в сингулярности Большого взрыва. В условиях сингулярности ОТО и все прочие законы физики не работают: никому не под силу предсказать, что таит или сулит такой объект. Как объяснялось выше, Большой взрыв и все события до него можно просто-напросто выбросить из теории, поскольку они совершенно никак не влияют на то, что мы наблюдаем сейчас. Стало быть, пространство-время должно иметь границу – начало в точке Большого взрыва.225
Аноним21 сентября 2025 г.Читать далееКак же черная дыра умудряется испускать частицы, когда известно, что ничто не может уйти из-под ее горизонта событий? Квантовая механика отвечает на этот вопрос так: частицы появляются не из «нутра» черной дыры, а из «пустого» пространства сразу за горизонтом событий. Это следует понимать следующим образом: пространство, которое мы считаем «пустым», не может быть таковым в действительности, потому что это означало бы, что все поля, включая электромагнитное и гравитационное, должны быть равны нулю. Но величина поля и скорость его изменения со временем сходны с положением и скоростью частицы: согласно принципу неопределенности чем точнее одна из этих величин, тем с меньшей точностью мы можем рассчитать другую. Так, в «пустом» пространстве поле не может быть в точности равно нулю, поскольку в этом случае оно имело бы точное значение (нулевое) и точную скорость изменения (тоже нулевую). Величина поля должна содержать некоторую минимальную неопределенность, или квантовые флуктуации. Эти флуктуации можно рассматривать как пары частиц света или гравитации, которые совместно рождаются в некоторое время, расходятся, а затем снова сходятся и взаимно аннигилируют. Это виртуальные частицы, аналогичные тем, что переносят гравитационную силу Солнца: в отличие от реальных частиц, их невозможно обнаружить непосредственно – с помощью детектора частиц. Но их косвенные проявления – например, небольшие изменения энергии орбит электронов в атомах – поддаются измерению и замечательно согласуются с теоретическими предсказаниями. Из принципа неопределенности также следует возникновение сходных виртуальных пар частиц вещества, таких как электроны и кварки. Но в этом случае один из членов пары должен быть частицей, а второй – античастицей (античастицы света и гравитации совпадают с соответствующими частицами).
Поскольку энергия не может возникать из ничего, то один из членов пары частица – античастица должен иметь положительную энергию, а другой – отрицательную. Обладателю отрицательной энергии суждено быть короткоживущей виртуальной частицей, потому что в нормальных условиях энергия реальных частиц всегда положительна. Посему частице с отрицательной энергией предстоит найти партнера, а им обоим впоследствии – взаимно аннигилировать. Но энергия реальной частицы вблизи массивного тела меньше, чем у частицы на большом удалении, поскольку ее перемещение вдаль в условиях гравитационного притяжения тела требует затрат энергии. В обычных условиях энергия частицы все же остается положительной, но гравитационное поле внутри черной дыры настолько сильно, что даже энергия реальной частицы внутри нее может оказаться отрицательной. Поэтому в присутствии черной дыры виртуальная частица с отрицательной энергией вполне может упасть в нее и превратиться там в реальную частицу или античастицу. В этом случае она больше не обязана взаимно аннигилировать со своей парой. Покинутый партнер может также упасть в черную дыру или, если он обладает положительной энергией, покинуть ее окрестности в виде реальной частицы или античастицы. Удаленный наблюдатель примет эту частицу за излученную черной дырой. Чем меньше черная дыра, тем меньшее расстояние частица с отрицательной энергией должна пройти, прежде чем стать реальной, и следовательно, тем выше темп излучения – а также эффективная температура – черной дыры.
Положительная энергия исходящего излучения уравновешивается потоком частиц отрицательной энергии, направленным внутрь черной дыры. В соответствии с уравнением Эйнштейна E = mc2 (где E – энергия, m – масса, а c – скорость света) энергия пропорциональна массе. Следовательно, поток отрицательной энергии в черную дыру приводит к уменьшению ее массы. По мере уменьшения массы уменьшается и площадь горизонта событий, однако уменьшение энтропии черной дыры в полной мере компенсируется энтропией испускаемого ею излучения, и таким образом, второе начало термодинамики не нарушается.225
Аноним21 сентября 2025 г.Читать далееДо 1970 года мои изыскания в области общей теории относительности касались в основном вопроса о том, существовала ли сингулярность в момент Большого взрыва. Но однажды вечерорм в ноябре того года, вскоре после рождения дочери Люси, я задумался о черных дырах, готовясь ко сну. Из-за моей болезни процесс это довольно медленный, поэтому у меня было много времени для размышлений. Тогда еще не существовало ясного представления о том, какие точки пространства-времени находятся внутри черной дыры, а какие – снаружи. Я уже обсуждал с Роджером Пенроузом идею определить черную дыру как множество событий, из которых невозможно уйти на большое расстояние, и это определение сейчас стало общепринятым. Оно означает, что граница черной дыры – горизонт событий – образована путями лучей света, которые и не сворачивают к сингулярности, и не могут покинуть черную дыру, оставаясь на грани между двумя «маршрутами». Это напоминает попытку убежать от полицейских, когда преступник остается на шаг впереди, но при этом не в состоянии полностью избавиться от преследователей.
Внезапно я понял, что пути этих лучей никогда не сблизятся друг с другом. Если бы это произошло, то рано или поздно они бы пересеклись. Это все равно что встретить другого беглеца, удирающего от полиции в противоположном направлении, – оба оказались бы в наручниках! (Или, в нашем случае, упали бы в черную дыру.) Но если бы черная дыра поглотила эти лучи, они не могли бы находиться на ее границе. Посему пути лучей на горизонте событий всегда должны быть параллельны друг другу или расходиться. Можно взглянуть на происходящее и с другого угла: горизонт событий, то есть границу черной дыры, можно сравнить с краем тени – тени неминуемой гибели. Если посмотреть на тень, которую отбрасывает предмет, освещенный удаленным источником, например Солнцем, то видно, что лучи света на краю тени не сближаются друг с другом.
Если пути лучей света, образующие горизонт событий – границу черной дыры, – никогда не сближаются, то площадь горизонта событий может оставаться неизменной или увеличиваться со временем, но ни в коем случае не уменьшаться. Ведь это означало бы, что как минимум часть лучей света на границе должны сближаться. В действительности площадь эта увеличивается каждый раз, когда вещество или излучение падают в черную дыру. А при столкновении или слиянии двух черных дыр и последующем образовании новой черной дыры площадь горизонта событий последней будет больше или равна сумме площадей горизонтов событий исходных черных дыр. Это свойство «неуменьшения» площади горизонта события накладывает важное ограничение на возможное поведение черных дыр. Я так разволновался из-за этого открытия, что той ночью почти не спал. На следующий день я позвонил Роджеру Пенроузу, и он согласился со мной. Вообще-то я думаю, что он уже знал об этом свойстве площади [горизонта событий]. Правда, он использовал немного иное определение черной дыры. Он не осознавал, что оба определения задают одни и те же границы черной дыры и, следовательно, одно и то же значение площади при условии, что черная дыра достигла состояния, которое не меняется со временем.
«Неуменьшение» площади черной дыры отсылает нас к понятию энтропии – физической величине, которая является мерой хаоса в системе. С точки зрения здравого смысла, если никак не вмешиваться в ход событий, то степень беспорядка имеет свойство увеличиваться. (Чтобы убедиться в этом, достаточно просто перестать заниматься ремонтом в доме!) Из беспорядка можно получить порядок (например, покрасить стены), но это потребует усилий и энергии, а значит, уменьшит количество «упорядоченной» энергии в нашем распоряжении. Точная формулировка этой идеи известна как второе начало термодинамики. Закон гласит, что энтропия изолированной системы всегда возрастает и что при объединении двух систем энтропия объединенной системы больше суммы энтропий исходных систем.229
Аноним21 сентября 2025 г.Черные дыры – один из довольно немногочисленных случаев в истории науки, когда теория развивалась в значительной степени как чисто математическая модель, а наблюдательные ее подтверждения появились уже потом. И действительно, это обстоятельство противники концепции приводили как основной аргумент: как можно верить в наличие объектов, единственным свидетельством существования которых являются расчеты, основанные на сомнительной общей теории относительности?
225