Логотип LiveLibbetaК основной версии

Рецензия на книгу

Математика. Утрата определенности

Морис Клайн

  • Аватар пользователя
    evfenen25 июля 2022 г.

    Вопрос об основаниях математики и о том, что представляет собой в конечном счете математика, остается открытым.

    Любая цивилизация, достойная так называться, занимается поиском истин.

    Не так давно прочитала  Морис Клайн - Математика. Поиск истины  , заинтересовалась. Решила познакомится с ещё одной работой автора.

    Книга вышла в 1980 году, и в ней американский профессор рассказывает о развитии математической мысли, пытается объяснить сущность математики и проблемы, которые возникли в этой науке в конце XIX и в XX веке...



    Был этот мир глубокой тьмой окутан.
    Да будет свет! И вот явился Ньютон.
    Но Сатана недолго ждал реванша.
    Пришёл Эйнштейн — и стало всё, как раньше.

    Кстати, Ньютон был профессором математики Кембриджского университета и по праву считается одним из величайших математиков всех времен...

    Автор в этой книге взял на себя "роль сатаны".)

    Наши предшественники видели в математике непревзойдённый образец строгих рассуждений, свод незыблемых  истин о законах природы.



    К концу XVIII в. математика была подобна гигантскому дереву, прочно стоявшему на почве реальности, с корнями двухтысячелетней давности, с раскидистыми ветвями....

    Но что-то пошло не так, считает Клайн.



    Предмет математического исследования — условность, не имеющая опоры в реальности.

    Автор рассказывает про пятый постулат Евклида, о параллельных прямых. Стоило только отмести этот постулат, и вот вам, пожалуйста, другие непротиворечивые геометрии.

    Помимо Лобачевского, который предложил неевклидову геометрию, другой великий математик Карл Фридрих Гаусс, тоже пришел к подобному выводу. Но не опубликовал свои исследования. Почему? Так как придерживался учения Канта, считая, что геометрические представления - вещь истинная.

    А теперь мы не знаем, какая из представленных геометрий является истинной.



    Стало ясно, что математики сформулировали казавшиеся им правильными аксиомы геометрии, руководствуясь своим весьма ограниченным опытом, и ошибочно сочли эти аксиомы самоочевидными истинами.

    А развитие алгебры привело к тому, что произведение двух сомножителей, отличных от нуля, может давать ноль.



    В середине XIX в. математики вынуждены были признать, что глубоко заблуждались, принимая математические законы за абсолютные истины...

    Книга занимательная. Но если вы не имеете представления о  комплексных числах, векторах, матрицах, логарифмах, то вам будет не интересно то, о чём математики спорили на протяжении последних столетий.

    Формулами книга не перегружена и повествование подано с точки зрения философского вопроса:  является ли математика отражением реального мира или это чистая игра ума.



    Почто, о боги, в этом мире
    Должно быть дважды два — четыре?
    63
    626